Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Air Waste Manag Assoc ; 71(6): 721-736, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33507131

RESUMEN

Daily fine (PM2.5) and coarse (PM10-2.5) particle matter (PM) samples collected at Parque O'Higgins station in downtown Santiago de Chile have been studied to find the trends in concentration from 1998 to 2018. Elemental concentration was obtained using X-ray fluorescence (XRF). Regression models from previous studies indicate that the PM2.5 and PM10-2.5 fractions have had a continuous decrease since 1988 mostly due to several policy control measures carried out over several decades. PM2.5 has decreased from 68.3 in 1988 to 27.6 µg/m3 in 2018 (60.4%). However, if only the last 8 years are considered (2011-2018), a leveling off can be observed in PM10-2.5 and PM2.5, which points to a change in the tendency. Cluster analysis of the elements in the fine and coarse fractions were identified to evaluate trends in the contributing sources. In the fine fraction, the mass contribution of crustal elements (Si, Al, Ca, and Fe) has remained stable in the last 8 years, and mass contribution of elements (Pb, Br, and Cl) associated to anthropogenic sources (traffic, wood burning) has also remained stable in the same period. For the coarse fraction, the contribution of one group of elements associated to crustal or anthropogenic sources has remained stable, and another group has decreased in the last 8 years. The leveling off can be ascribed to decreased rainfall during the last 8 years that have promoted soil dryness and resuspension of dust facilitated by wind or vehicular traffic. Mean temperatures have increased in the last 30 years, but have not contributed directly to the leveling of the concentration.Implications: Regression models indicate that the PM2.5 (fine) and PM10-2.5 (coarse) fractions at Parque O'Higgins station in Santiago de Chile have had a continuous decrease since 1988 mostly due to several policy control measures carried out over several decades. However, in the last 8 years (2011-2018), a leveling off can be observed in PM10-2.5 and PM2.5. X-ray fluorescence (XRF) analysis was performed in the fine fractions indicating that the mass contribution of crustal elements (Ca, Al, Si, Fe) to the fine fraction has remained stable. This phenomenon can be ascribed to decreased rainfall during the last 8 years that have promoted soil dryness and resuspension of dust facilitated by wind or vehicular traffic. The crustal elements in the coarse fraction have also remained stable.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Chile , Monitoreo del Ambiente , Tamaño de la Partícula , Material Particulado/análisis
2.
J Res Natl Inst Stand Technol ; 126: 126025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38469433

RESUMEN

Disinfection of surfaces by ultraviolet-C (UV-C) radiation is gaining importance in diverse applications. However, there is generally no accepted computational procedure to determine the minimum irradiation times and UV-C doses required for reliable and secure disinfection of surfaces. UV-C dose distributions must be comparable for devices presently on the market and future ones, as well as for the diverse surfaces of objects to be disinfected. A mathematical model is presented to estimate irradiance distributions. To this end, the relevant parameters are defined. These parameters are the optical properties of the UV-C light sources, such as wavelength and emitted optical power, as well as electrical features, like radiant efficiency and consumed power. Furthermore, the characteristics and geometry of the irradiated surfaces as well as the positions of the irradiated surfaces in relation to the UV-C light sources are considered. Because mercury (Hg) lamps are competitive with UV-C light-emitting diodes, a comparative analysis between these two light sources based on the simulation results is also discussed.

3.
J Air Waste Manag Assoc ; 60(12): 1410-21, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21243895

RESUMEN

Santiago de Chile is one of the most polluted South American cities, concentrating its pollution episodes during winter. Daily PM2.5 (particulate matter [PM] < or = 2.5 microm in aerodynamic diameter) concentrations over 80 microg/m3 have been reached frequently since 1998. Despite several regulations introduced over the past 20 yr to improve the air quality, PM concentration levels remain high. In this work, sampling in downtown Santiago was conducted from April 1998 to August 2007 for PM2.5 and from October 2003 to March 2006 for PM10-2.5 (PM between 2.5 and 10 microm in aerodynamic diameter) with dichotomous samplers. Elemental analysis was performed on the samples with X-ray fluorescence. The resuming series of 859 samples and 216 elements identified were divided into semiannual periods and analyzed with factor analysis. Five factors are clearly discerned: soil, motor vehicles, residual oil, marine aerosols, and secondary sulfates. The soil factor in the fine fraction shows a clear increase from 2002 to 2006, whereas the coarse fraction of this factor shows a stable trend. The most probable cause for this trend is the growth in the number of vehicles in Santiago (6.5%/yr), which increases the resuspension of particles from the ground. Another cause for the increase is the growth in the construction activity (4.2%/yr). The motor vehicle factor in the fine fraction shows a decrease between 1998 and 2006. The decrease in the apportionment of this factor can be explained by the improvement in the vehicle fleet. In Santiago, the number of noncatalytic vehicles has been reduced from 389,000 in 2001 to 275,000 in 2006. The residual oil factor also shows a decrease between 1998 and 2006. The decrease could be attributed to the adoption of cleaner technologies and norms regarding gasoline and diesels.


Asunto(s)
Contaminantes Atmosféricos/análisis , Vehículos a Motor , Material Particulado/análisis , Suelo/análisis , Aerosoles/análisis , Chile , Polvo/análisis , Modelos Estadísticos , Aceites/análisis , Tamaño de la Partícula , Estaciones del Año , Espectrometría por Rayos X , Sulfatos/análisis
4.
J Air Waste Manag Assoc ; 57(7): 845-55, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17688000

RESUMEN

Santiago, Chile, is one of the most polluted cities in South America. As a response, over the past 15 yr, numerous pollution reduction programs have been implemented by the environmental authority, Comisión Nacional del Medio Ambiente. This paper assesses the effectiveness of these interventions by examining the trends of fine particulate matter (PM(2.5)) and its associated elements. Daily fine particle filter samples were collected in Santiago at a downtown location from April 1998 through March 2003. Additionally, meteorological variables were measured continuously. Annual average concentrations of PM(2.5) decreased only marginally, from 41.8 microg/m3 for the 1998-1999 period to 35.4 microg/m3 for the 2002-2003 period. PM(2.5) concentrations exceeded the annual U.S. Environmental Protection Agency standard of 15 microg/m3. Also, approximately 20% of the daily samples exceeded the old standard of 65 microg/m3, whereas approximately half of the samples exceeded the new standard of 35 microg/m3 (effective in 2006). Mean PM(2.5) levels measured during the cold season (April through September) were three times higher than those measured in the warm season (October through March). Particulate mass and elemental concentration trends were investigated using regression models, controlling for year, month, weekday, wind speed, temperature, and relative humidity. The results showed significant decreases for Pb, Br, and S concentrations and minor but still significant decreases for Ni, Al, Si, Ca, and Fe. The larger decreases were associated with specific remediation policies implemented, including the removal of lead from gasoline, the reduction of sulfur levels in diesel fuel, and the introduction of natural gas. These results suggest that the pollution reduction programs, especially the ones related to transport, have been effective in reducing various important components of PM(2.5). However, particle mass and other associated element levels remain high, and it is thus imperative to continue the efforts to improve air quality, particularly focusing on industrial sources.


Asunto(s)
Contaminación del Aire/análisis , Monitoreo del Ambiente , Material Particulado/química , Chile , Tamaño de la Partícula , Material Particulado/análisis , Análisis de Regresión , Estaciones del Año
5.
J Air Waste Manag Assoc ; 55(3): 342-51, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15828676

RESUMEN

Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da < 2.5 microm (PM2.5) and coarse PM with 2.5 < da < 10 microm (PM2.5-10) were collected using dichotomous samplers. The inhalable particle fraction, PM10, was determined as the sum of fine and coarse concentrations. Wind speed, temperature and relative humidity (RH) were also measured continuously. Average concentrations of PM2.5 for the 1989-2001 period ranged from 38.5 microg/m3 to 53 microg/m3. For PM2.5-10 levels ranged from 35.8-48.2 microg/m3 and for PM10 results were 74.4-101.2 microg/m3 across the four sites. Both annual and daily PM2.5 and PM10 concentration levels exceeded the U.S. National Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.


Asunto(s)
Contaminantes Atmosféricos/análisis , Adhesión a Directriz , Chile , Monitoreo del Ambiente , Tamaño de la Partícula , Control de Calidad , Estudios Retrospectivos
6.
J Air Waste Manag Assoc ; 54(7): 799-808, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15303292

RESUMEN

The optical absorption coefficient, particulate matter with an aerodynamic diameter <2.5 microm, and elemental carbon (EC) have been measured simultaneously during winter and spring of 2000 in the western part of Santiago, Chile (Pudahuel district). The optical measurements were carried out with a low-cost instrument recently developed at the University of Santiago. From the data, a site-specific mass absorption coefficient of 4.45+/-0.01 m2/g has been found for EC. In addition, a mass absorption coefficient of 1.02+/-0.03 m2/g has been obtained for PM2.5. These coefficients can be used during the colder months (May-August) to obtain EC concentration or PM2.5 from a measurement of the light absorption coefficient (sigmaa). The high correlation that has been found between these variables indicates that sigmaa is a good indicator of the degree of contamination of urbanized areas. The data also show an increase in PM2.5 and EC concentration during winter and an increase in the ratio of EC to PM2.5. When the EC/PM2.5 ratio is calculated during rush hour (7:00 a.m.-11:00 a.m.) and during part of the night (9:00 p.m.-2:00 a.m.), it is found that the increase is caused by higher concentration levels of EC at night. These results suggest that the rise in the EC concentration is caused by emissions from heating and air mass transport of pollution from other parts of the city, while traffic contribution remains approximately constant.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbono/análisis , Monitoreo del Ambiente/métodos , Luz , Chile , Calefacción , Tamaño de la Partícula , Estaciones del Año , Emisiones de Vehículos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...